
Developing widgets on Maemo 5
•Juha Järvi

• Software designer

• Foreca

•

•

•

•



ForecaWeather widget for Maemo 5

•

•



Introduction

• The talk is based on experiences from one Maemo 5 widget

• Likely to apply to other Fremantle widgets

• Our widget shows rarely changing location-based data

• Nothing presented is the official opinion of Foreca or Nokia

• No guarantees offered for correctness!

• Everything will be on these slides, available for download later



Graphic Design 1/4

• Keep the widget small

• Fit 3 widgets on one desktop, comfortably spaced

• A plain design fits different themes better

• Dark gray translucent background is used in many widgets

• Use colors from the theme for text and other elements

• Single-color symbols can be colored programmatically



Graphic Design 2/4

• Show only essential info

• Use large graphics and fonts with short text

• User should understand everything important at a glance

• Leave space for translations in different languages!

• Avoid multiple text columns, words may be very long

• Text could expand 3 times from English version



Graphic Design 3/4

• If the widget has buttons, make them large

• Best if only thumbs are needed for use

• Accidental clicks shouldn’t have annoying results

• Avoid complicated interactive elements

• Put controls in a separate dialog or fullscreen program

• Whole widget can be like a button to open more content



Graphic Design 4/4

• Separate fullscreen mode has many benefits

• More controls can easily fit on the screen

• Tabs and scrolling can be used to flip through information

• Widget content can be shown even bigger for car use etc.

• Allows more creative freedom for users and developers

• Widget settings are easier to find than in desktop menu



Architecture 1/5

• Widgets are libraries loaded by the home screen application

• They need to be written more carefully than other apps

• Crashes are a worse experience than with full programs

• Memory leaks can accumulate over many days

• Draining the battery must be avoided

• Moving complicated operations to a separate program is safer



Architecture 2/5

• Create a separate stand-alone fullscreen program

• Crashes and hangs are easier for users to recover from

• Complex features and processing are safer to implement

• Debugging on a PC is simpler

• Software is useful even if desktop is already full of widgets!

• Problem is making the parts communicate



Architecture 3/5

• Having a widget and a fullscreen part introduces problems

• Settings changes in either one should affect the other

• D-BUS message sent to the full program launches it

• System events are easier to receive in a stand-alone app

• Network transfers must work with just one part present

• Both parts together also need to be synchronized



Architecture 4/5
• Messaging issues are solved by a third, background program

• Let’s call it “controller”

• Widget and fullscreen program message it when started

• Controller is then started by D-BUS if not running

• Keeps track of which of the other parts are running

• Propagates messages from one to the other

• Handles network transfers and system events



Architecture 5/5
• Design the architecture for stability and low power usage

• Pay special attention to the widget and controller

• Keep their source code simple

• Small enough to read through before important releases

• Carefully verify they can’t hang or crash

• As a general rule they should always be idle

• Fullscreen program is less critical



Widget 1/1
• Widget on its own can simply stay in GTK main loop

• Only reacts to mouse events or D-BUS messages

• Everything is handled in small simple subroutines

• No timers or anything that runs a long time

• Have the controller do any online data retrieval

• Foreca’s widget is under 2k total lines of C

• Only uses D-BUS, GTK and Hildon libs



Controller 1/4
• Controller waits for messages in GLib main loop

• Listens to system sleep events to stop all activity

• Possibly tracks network connection and GPS status changes

• Use ACWP instead of GPS or turn it on only briefly!

• One timer can be running to fetch data updates or similar

• Activating only every 30 minutes or less frequently

• Turned off if the device goes to sleep



Controller 2/4

• Automatically updates data from the network only if:

• Device woke up, got online or other event occurred

• AND the current data is invalid

• Over 30 minutes old or user chose to view new data

• If updating based on location, user moved by several km

• AND the screen is on and program is visible on screen



Controller 3/4
• Splitting activities into helper programs can go further

• Simple to write and test a program to do one HTTP download

• Handling many simultaneously takes more effort

• Also third-party libraries can get unstable over time

• Same goes for any input/output that isn’t a constant stream

• Just wait forever until all data has arrived, blocking IO

• Controller simply needs to start and manage the helpers 



Controller 4/4
• Controller forks and executes helper programs, uses pipes

• A list is kept of all running helpers

• Special timer fires every second while any are running

• If one has been running too long, kill it

• If device goes to sleep, kill them all!

• When a helper finishes, send results over D-BUS

• Timer stops when all have finished



Benefits 1/2

• The multiple processes may sound like wasting resources

• However this isn’t an application program or web browser

• Widgets should transfer little data very rarely

• Most of the time helpers are not running

• The widget is less complex and uses less resources!

• Foreca’s controller is under 1k lines of C



Benefits 2/2

• User experience is also improved by the modular design

• Device memory usage is lower

• Less problems from hangs or crashes

• The user interface isn’t affected

• Code for the small modules is verifiable by reading

• Few interactions between parallel processes help testing



Implementation 1/2

• The current API requires using C on some level

• For rapid development of many widgets there are better tools

• Lua is a good recommendable scripting language

• We have written bindings for Diablo widgets

• Straightforward to use, little extra C code needed (2k lines)

• Binary is about 100k, even widget graphics take more space



Implementation 2/2
• More controversially, avoid Autoconf

• 5k lines of C and 30k lines of scripts to compile it = wrong

• Write a makefile for the widget project manually

• It’s only a couple dozen lines and only needs to call gcc

• Keep it simple: if you want to port, plan for a partial rewrite

• A widget is mainly UI and every device has a new UI style

• Widget sources don’t need to compile for several devices



Testing 1/4
• Test constantly on the device itself if possible

• Gives more reliable results of real-world behavior

• A script on the device can download new binary files

• Two key presses after every build, or automated with SSH

• Force widget reload by deleting and restoring config entry

• It’s inside ~/.config/hildon-desktop/home.plugins

• (Done in the controller also works for widget resizing)



Testing 2/4
• Types of tests to use regularly:

• Smoke test after every build (does it still run on the device)

• Automatic test cases for controller and its helpers

• Ask next person you see to try out the user interface

• Remember to switch locales

• For fullscreen program setting LC_* in xterm is enough

• Get a draft German translation early, long words there!



Testing 3/4

• Special for a mobile/embedded device, test power usage!

• Along with not crashing, this is top priority for a widget

• Run “powertop -t60” on device

• Need to be root, install rootsh package first

• Execute a planned 60-second test

• Check total wakeups



Testing 4/4
• Test and compare different power usage scenarios

• Widget on desktop or not in use

• Device online using WLAN or 3G

• GPS enabled or disabled if relevant

• Flip the device lock side switch to sleep for some seconds

• Other widgets or apps present using the same services

• Widget must not cause extra wakeups without good reason!



Summary

• Keep widget small and text easy to read

• Put complex features in a separate program

• Split code into short independent processes

• Carefully test stability and power usage



Thanks!

• Questions or comments?


