Editing Documentation/Maemo 5 Developer Guide/DBus/DBus Basics

Warning: You are not logged in. Your IP address will be recorded in this page's edit history.

Warning: This page is 33 kilobytes long; some browsers may have problems editing pages approaching or longer than 32kb. Please consider breaking the page into smaller sections.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 30: Line 30:
* The system bus is intended for communication when applications (or services), running with separate sessions, wish to communicate with each other. The most common use for this bus is sending system-wide notifications when system-wide events occur. The adding of a new storage device, network connectivity change events and shutdown-related events are all examples of system-wide events for which the system bus must be used.
* The system bus is intended for communication when applications (or services), running with separate sessions, wish to communicate with each other. The most common use for this bus is sending system-wide notifications when system-wide events occur. The adding of a new storage device, network connectivity change events and shutdown-related events are all examples of system-wide events for which the system bus must be used.
-
In addition to the single system bus, a separate session bus for each desktop session can exist. Because all user applications in a Maemo-compatible device run with the same user ID, the device only has one session bus as well.
+
In addition to the single system bus, a separate session bus for each desktop session can exist. Because all user [[applications]] in a Maemo-compatible device run with the same user ID, the device only has one session bus as well.
A bus exists in the system in the form of a ''bus daemon'', a process that specializes in passing messages from one process to another. The daemon also forwards notifications to all applications on the bus. At the lowest level, D-Bus only supports point-to-point communication, normally using the local domain sockets (<code>AF_UNIX</code>) between the application and the bus daemon. The point-to-point aspect of D-Bus is, however, abstracted by the bus daemon, which implements the addressing and message passing functionality. This means that applications do not need to care about which specific process receives each method call or notification.
A bus exists in the system in the form of a ''bus daemon'', a process that specializes in passing messages from one process to another. The daemon also forwards notifications to all applications on the bus. At the lowest level, D-Bus only supports point-to-point communication, normally using the local domain sockets (<code>AF_UNIX</code>) between the application and the bus daemon. The point-to-point aspect of D-Bus is, however, abstracted by the bus daemon, which implements the addressing and message passing functionality. This means that applications do not need to care about which specific process receives each method call or notification.

Learn more about Contributing to the wiki.


Please note that all contributions to maemo.org wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see maemo.org wiki:Copyrights for details). Do not submit copyrighted work without permission!


Cancel | Editing help (opens in new window)