Editing Maemo training material/Getting Started/What is maemo

Warning: You are not logged in. Your IP address will be recorded in this page's edit history.

Warning: This page is 41 kilobytes long; some browsers may have problems editing pages approaching or longer than 32kb. Please consider breaking the page into smaller sections.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 384: Line 384:
=<span class="arabic">1</span>.<span class="arabic">6</span> Battery Doesn't Last Forever!=
=<span class="arabic">1</span>.<span class="arabic">6</span> Battery Doesn't Last Forever!=
-
Low power consumption is one of main hardware design goals with mobile devices because of the limited electric charge in their power supplies. If the hardware is designed correctly, it may itself contain logic and rules to enter different power saving states. To enter these power saving states the hardware requires that there is no activity in the system, in other words, there is no task ready to be run by the OS kernel scheduling mechanism. Even if power saving functionality is implemented in the hardware, activating it might not always be possible. If the applications running on the hardware are "misbehaving", then the system will be active all of the time and this makes it impossible for the power saving features to be activated at hardware level. Some of these power saving features include: changing the clock frequency dynamically, supporting multiple operating voltages and switching integrated peripherals' sleep modes.
+
Low power consumption is one of main hardware design goals with mobile devices because of the limited electric charge in their power supplies. If the hardware is designed correctly, it may itself contain logic and rules to enter different power saving states. To enter these power saving states the hardware requires that there is no activity in the system, in other words, there is no task ready to be run by the OS kernel scheduling mechanism. Even if power saving functionality is implemented in the hardware, activating it might not always be possible. If the applications running on the hardware are "misbehaving", then the system will be active all of the time and this makes it impossible for the power saving features to be activated at hardware level. Some of these power saving features include: changing the clock frequency dynamically, supporting multiple operating voltages and switching integrated peripherals' sleep modes.
Different parts of the hardware will require different amounts of power to run. The following pie diagram is not based on any real measurements but roughly shows how power consumption is distributed between different subsystems in a device:
Different parts of the hardware will require different amounts of power to run. The following pie diagram is not based on any real measurements but roughly shows how power consumption is distributed between different subsystems in a device:

Learn more about Contributing to the wiki.


Please note that all contributions to maemo.org wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see maemo.org wiki:Copyrights for details). Do not submit copyrighted work without permission!


Cancel | Editing help (opens in new window)

Templates used on this page: